If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+5y-16=0
a = 1; b = 5; c = -16;
Δ = b2-4ac
Δ = 52-4·1·(-16)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{89}}{2*1}=\frac{-5-\sqrt{89}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{89}}{2*1}=\frac{-5+\sqrt{89}}{2} $
| -17=-5+2v | | 2x-1=x-4/3 | | 22-4n=10-n | | 7x+3-2x=19+5x-16 | | 10w-2=45 | | 4m-3=9-6m | | 6f-2=1+5f | | -0.5(-2x+8-8=8 | | 2w+10=4w-3 | | -4(2n-2)-8(9+4n=-7n-n | | 9x-8/2x+5=8 | | 7y+4=-y-32 | | 24/x=300 | | 18+8x+14x-18+7x+9=180 | | 6-3l=-3 | | 8x+6=14x-18 | | 40(x)^2=190 | | 116y^2-348-913=0 | | 11x4=23.8 | | 23.8x11=4 | | 23.8x4=11 | | 3a+a+23a+32=180 | | 5u+12u+44=180 | | 2u+51+73=180 | | 12.3=t/ | | 15x+30+120=180 | | 3w+6w+72=180 | | 11b+71+76=180 | | 5v+13v+36=180 | | 15b+18b+114=180 | | 20u+20u+20u=90 | | 22u+22u+22u=180 |